DDI-COCO: A DATASET FOR UNDERSTANDING THE EFFECT OF COLOR CONTRAST IN MACHINE-ASSISTED SKIN DISEASE DETECTION

Ming-Chang Chiu^{*1}, Yingfei Wang^{*1}, Jen-Ju Kuo², Pin-Yu Chen³ **IBM Research** ¹ University of Southern California ² NTU Hospital ³ IBM Research

DDI-ColorContrast (DDI-CoCo) Dataset

- Study lesion-skin tone color contrast effect on machine assisted skin disease malignancy detection
- Annotated dataset with contrast level labels derived from pixel RGB values
- Based on Diverse Dermatology Image (DDI) Dataset

Results

Skin tone bias is more pronounced in the low contrast group,

<u>contrast bias is more pronounced for darker skin tones</u>

Dermatologist-reviewed and variability-controlled labeling procedure: 3 steps

- **1. Retrieve RGB values on lesion areas**
- 2. Retrieve RGB values around lesion areas
- 3. select points with similar lighting conditions
- 4. Take Avg and use the WCAG formula for contrast score:
 - L = 0.2126 * R + 0.7152 * G + 0.0722 * B
 - Contrast ratio = (L1 + 0.05) / (L2 + 0.05), where L1 is derived using the lighter one in foreground or background colors, and L2 is from the darker one.

Fine-tuning closes the performance gap between low & high

contrast groups

AUC	Inception	Efficient	SwinV2
High	0.810	0.822	0.852
Low	0.809	0.819	0.832

Table 2: Average AUC by contrast after fine-tuning.

<u>Similar Behavior in SoTA (SwinV2, EfficientNet) models</u>

DDI-CoCo	I-II	III-IV	V-VI	Total
High	88	134	92	314
Low	114	103	111	328

Table 1: Number of images by contrast & skin tones.

Experiments

<u>2 Objectives</u>: (1) to evaluate if DNNs are subject to contrast bias, similar to the skin tone bias observed in the DDI paper. (2) to assess the efficacy of DDI-CoCo in reducing the performance gap between high and low contrast groups.

<u>2 Setups</u>: (1) we train on the comprehensive and publicly available ISIC 2019 dataset and evaluate on the entire DDI-CoCo dataset. This OOD setup is practical as we do not always have ID data in clinical evaluations. (2) To test if fine-tuning on DDI can reduce color contrast bias, we fine-tune on 80% of DDI-CoCo and evaluate on the rest.

AUC	InceptionV3	EfficientNet	SwinV2
I-II	0.792	0.776	0.814
V-VI	0.828	0.862	0.895
Gap	+0.036	+0.086	+0.081

Table 3: Average AUC by skin tones after fine-tuning.

Labeling Process Justification

- The contrast score distribution is consistent across labellers, despite the distinction in pixel selection
- Selected background pixels

have lower RGB values for the darker skin tone group

Conclusion

<u>3 Models</u>: InceptionV3, EfficientNet, Swin TransformerV2

(SwinV2)

- Systematic investigation focused on the impact of color contrast on skin disease malignancy detection

- DDI-CoCo Benchmarking
- Robust labeling method
- Fine-tuning on diverse image dataset helps mitigate contrast bias